
Nilpotent adjacency matrices, random graphs and quantum random variables

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 155205

(http://iopscience.iop.org/1751-8121/41/15/155205)

Download details:

IP Address: 171.66.16.148

The article was downloaded on 03/06/2010 at 06:43

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/15
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 155205 (16pp) doi:10.1088/1751-8113/41/15/155205

Nilpotent adjacency matrices, random graphs and
quantum random variables
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Abstract
While a number of researchers have previously investigated the relationship
between graph theory and quantum probability, the current work explores a
new perspective. The approach of this paper is to begin with an arbitrary
graph having no previously established relationship to quantum probability
and to use that graph to construct a quantum probability space in which
moments of quantum random variables reveal information about the graph’s
structure. Given an arbitrary finite graph and arbitrary odd integer m � 3,
fermion annihilation operators are used to construct a family of quantum
random variables whose mth moments correspond to the graph’s m-cycles. The
approach is then generalized to recover a graph’s m-cycles for any integer m � 3
by defining nilpotent adjacency operators in terms of null-square generators of
an infinite-dimensional Abelian algebra. It is shown that ordering the vertices
of a simple graph induces a canonical decomposition � = �+ + �− on any
nilpotent adjacency operator �. The work concludes with applications to
Markov chains and random graphs.

PACS numbers: 02.50.−r, 03.67.−a, 02.10.Ox, 02.10.Yn
Mathematics Subject Classification: 60B99, 81P68, 05C38, 05C50, 05C80,
15A66

1. Introduction

Beginning with a graph G = (V ,E) on n vertices, the vertices of G can be associated with
unit coordinate vectors in R

n. Recalling the inner product 〈u, v〉 = u†v in R
n, and letting A

denote the adjacency matrix of G, a well-known result in graph theory states that 〈x0, A
kx0〉

corresponds to the number of closed k-walks based at vertex x0 ∈ V.
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Of interest here is the related problem of recovering the k-cycles based at any vertex x0.
This can be done for any finite graph with the methods described herein.

The algebras used in this paper were originally derived as subalgebras of Clifford algebras.
Clifford algebras and quantum logic gates have been discussed in works by Li [8] and Vlasov
[18]. The role of Clifford algebras in quantum computing has been considered in works by
Havel and Doran [6], Matzke [10] and others.

In terms of the number of multiplications performed in the algebra, the computational
complexity of enumerating the Hamiltonian cycles in a graph on n vertices is O(n4). In this
context, some graph problems are moved from complexity class NP into class P [15].

Links between quantum probability and graph theory have been explored in a number
of works. Hashimoto, Hora and Obata (cf [5, 12]) obtained limit theorems for increasing
sequences of graphs Gn whose adjacency matrices admit a quantum decomposition An =
An

+ + An
−. Examples include Cayley graphs, Johnson graphs and distance-regular graphs.

Obata [12] uses this approach to focus on star graphs, which are obtained by gluing
together the common origins of a finite number of copies of a given graph. The adjacency
matrices of star graphs admit a quantum decomposition of the form An = An

+ + An
− + An

◦.
Star graphs are of particular interest because they are related to Boolean independence in
quantum probability.

Homogeneous trees are also of interest in quantum probability. These are related to the
free independence of Voiculescu [19].

Comb graphs, which provide models of Bose–Einstein condensation, are related to
monotone independence discovered by Lu [9] and Muraki [11]. Accardi, Ben Ghorbal and
Obata [2] computed the vacuum spectral distribution of the comb graph by decomposing the
adjacency matrix into a sum of monotone-independent random variables.

Another relevant work is that of Franz Lehner [7], who investigated the relationships
among non-crossing partitions, creation and annihilation operators, and the cycle cover
polynomial of a graph. In that work, the cycle indicator polynomials of particular digraphs are
used to understand the partitioned moments and cumulants occurring in Fock spaces associated
with characters of the infinite symmetric group of Bożejko and Guţă [3].

In contrast to the works cited above, the philosophy of the current work is to begin with an
arbitrary finite graph and then to construct an associated algebraic probability space in which
the moments of random variables reveal information about the graph’s structure. The graph
needs to possess no particular relationship to notions of independence or Fock spaces.

1.1. Quantum probability: operators as random variables

Provided here is a cursory review of standard concepts in quantum probability theory. The
primary references for this subsection are the works of Accardi et al (cf [2, 1]) and Hashimoto
et al [5].

Let A be a complex algebra with involution ∗ and unit 1. A positive linear ∗-functional on
A satisfying ϕ(1) = 1 is called a state on A. The pair (A, ϕ) is called an algebraic probability
space.

If A is commutative, the probability space is classical. If A is non-commutative, the
probability space is quantum.

Elements of A are random variables. A stochastic process is a family (Xt ) ⊂ A indexed
by an arbitrary set T. Given a stochastic process X = (Xt ), the polynomial ∗-algebra P(X) is
a ∗-subalgebra of A. The restriction of ϕ to this ∗-subalgebra gives a state ϕX on P(X) called
the distribution of the process X. If T = {1, 2, . . . , n} is a finite set, then ϕX is called the joint
distribution of the random variables {X1, . . . , Xn}.
2
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Table 1. Realizations of commutation relations.

Type Relation Realized by

Boson
[
B−, B+

] = 1 λn = n!
Fermion {B−, B+} = 1 λ0 = λ1 = 1, λn = 0 for n � 2
Free B−B+ = 1 λn = 1 for all n � 0

Let � = ⊕∞
n=0 Cφn be the Hilbert space with complete orthonormal basis {φn}.

Here φ0 represents the ‘vacuum vector’. In particular, φj is the unit vector defined by
φj = (0, . . . , 1︸︷︷︸

j th pos.

, . . . , 0)†.

Of particular interest in quantum probability theory are interacting Fock spaces. Let
λ0 = 1, and let {λi}1�i be a sequence of non-negative real numbers such that λm = 0 ⇒
λm+1 = λm+2 = · · · = 0. In the case that λn > 0 for all n, one defines the linear operators B+

and B− by

B+φn =
√

λn+1

λn

φn+1, n � 0 (1.1)

and

B−φn =

⎧⎪⎨⎪⎩
√

λn

λn−1
φn−1, n � 1

0, n = 0.

(1.2)

On their natural domains, B+ and B− are mutually adjoint and closed. Operators B+ and B−

are called the creation and annihilation operators, respectively.
The number operator is defined by

Nφn = nφn, n � 0. (1.3)

Recalling the definitions of the commutator and anti-commutator, which are [a, b] =
ab − ba and {a, b} = ab + ba, calculation shows

B+B−φ0 = 0, (1.4)

B−B+φn = λn+1

λn

φn, (1.5)

{B+, B−} = λn
2 + λn+1λn−1

λnλn−1
, n � 1, (1.6)

[
B+, B−] = λn

2 − λn+1λn−1

λnλn−1
, n � 1, (1.7)

B+n
φ0 =

√
λnφn, n � 0, (1.8)

B−n
φn =

√
λnφ0, n � 0. (1.9)

Realizations of commutation relations are summarized in table 1.
When there exists some m � 1 such that λm > 0 but λn = 0 for all n > m, one defines

the finite-dimensional Hilbert space

� =
m⊕

n=0

Cφn.

3
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The finite-dimensional operators B+ and B− are then defined in the obvious way. In this case,
B+φm = 0.

In either the finite- or infinite-dimensional case, (�, {λn}, B+, B−) is called an interacting
Fock space associated with {λn}.

1.2. Essential graph theory: terminology and notation

The reader is referred to [20] for more graph theory. A graph G = (V ,E) is a collection of
vertices V and a set E of unordered pairs of vertices called edges. Two vertices vi, vj ∈ V are
adjacent if there exists an edge {vi, vj } ∈ E.

A k-walk v0v1 . . . vk in a graph G is a sequence of vertices in G with initial vertex v0 and
terminal vertex vk such that there exists an edge {vj , vj+1} ∈ E for each 0 � j � k − 1. A
trail is a walk in which no edge appears more than once. A closed k-walk is a k-walk whose
initial vertex is also its terminal vertex. A k-circuit is a k-walk that is also a trail. A k-cycle
is a closed k-walk in which no vertex other than the initial/terminal vertex appears more than
once.

An edge {vi, vj } ∈ E is said to be incident with the vertices vi and vj . Similarly, vi and
vj are said to be incident with edge {vi, vj }. The degree of a vertex v ∈ V is defined as the
number of edges incident to v and is denoted deg(v).

When working with a finite graph G on n vertices, one often utilizes the adjacency matrix A

associated with G. If the vertices are labeled {v1, . . . , vn}, the adjacency matrix is defined by

Aij =
{

1 if vi, vj are adjacent,
0 otherwise.

(1.10)

When A is the adjacency matrix associated with a graph G on n vertices, a well-known
result of graph theory states that for any positive integer k and 1 � i � n, the entry (Ak)ii is
the number of closed k-walks based at vertex vi in G.

1.3. Operators as adjacency matrices

Graphs can be interpreted as operators on Hilbert spaces. In quantum probability, bounded
Hermitian operators on Hilbert spaces are quantum random variables. Similarly, quantum
random variables can be interpreted as graphs.

Given an interacting Fock space (�, {λn}, B+, B−) associated with {λn}, the operator
A = B+ + B− + N can also be interpreted as the adjacency matrix associated with an edge-
weighted graph having loops. The associated finite graph is constructed with vertex set

{φ0, φ1, . . . , φn}, edges {{φj , φj+1}}, edge weights
{√

λk

λk−1

}
and k loops based at vertex φk .

In this context, the adjacency matrix A is the sum of the upper-triangular matrix B−, the
lower-triangular matrix B+ and the diagonal matrix N. Visualizations of graphs associated with
finite-dimensional realizations of the commutation relations from table 1 appear in figures 1
and 2.

A quantum Bernoulli random variable X taking values ±1 with equal probability 1
2 admits

an expression of the form

X =
(

0 1
0 0

)
+

(
0 0
1 0

)
, (1.11)

4
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Figure 1. Graphs with adjacency matrix B+ + B− + N for free commutation relations (left) and
Boson commutation relations (right).

0 1

Figure 2. Graph with adjacency matrix B+ + B− + N for Fermion commutation relations.

commonly referred to as ‘quantum coin tossing’. Labeling the matrices of the right-hand side
of (1.11) as f and f +, respectively, X is decomposed into a sum of upper- and lower-triangular

nilpotent matrices. It is apparent that by defining φ0 = (10) and φ1 = (01), one obtains

f +φi =
{

φ1 if i = 0

0 otherwise,
f φi =

{
φ0 if i = 1

0 otherwise.
(1.12)

The corresponding number operator has the form

f0 =
(

0 0
0 1

)
. (1.13)

The matrix A = f + + f + f0 is the adjacency matrix of the graph appearing in figure 2.

5
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The adjacency matrix A = B+ + B− + N corresponding to the left graph of figure 1 is

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 3 1 0 0 0
0 0 0 1 4 1 0 0
0 0 0 0 1 5 1 0
0 0 0 0 0 1 6 1
0 0 0 0 0 0 1 7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (1.14)

where

B+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B− =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.15)

and

N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 4 0 0 0
0 0 0 0 0 5 0 0
0 0 0 0 0 0 6 0
0 0 0 0 0 0 0 7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.16)

2. Nilpotent adjacency operators

The approach of this paper is to begin with an arbitrary graph and use it to construct a quantum
random variable whose moments reveal information about the structures contained within the
graph.

Nilpotent adjacency matrix methods were first developed by the second author in [16].
Since then, the methods have been used by the authors to study random graphs [14], enumerate
non-crossing partitions [13] and to reconsider the computational complexity of NP problems
in the context of algebra multiplications required [15]. In addition, the second author has
used nilpotent adjacency matrix methods to give a graph-theoretic construction of iterated
stochastic integrals [17].

Absent from those works is a detailed inspection of nilpotent adjacency matrices from a
quantum probabilistic perspective. The current work addresses this issue by constructing an
infinite-dimensional probability space in which moments of quantum random variables reveal
information about structures within arbitrary graphs.

6
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2.1. Fermion adjacency operators

Adjacency operators can be defined using fermion creation or annihilation operators, and
information about the cycles of length k ≡ 1 (mod 2) can be recovered.

For each n > 0, the n-particle fermion algebra Fn is defined as the associative algebra
generated by the collection

{
fi, f

+
i

}
1�i�n

satisfying the canonical anticommutation relations
(CAR):

f +
i f +

j + f +
j f +

i = 0, (2.1)

fifj + fjfi = 0 (2.2)

and

fif
+
j + f +

j fi = δij , (2.3)

where δij is the Kronecker delta function. The generators also satisfy the squaring rule
fi

2 = f +
i

2 = 0.
Define the fermion field F by

F =
∞⊕
i=1

Fi . (2.4)

An arbitrary element u ∈ F has a canonical expansion of the form

u =
∑

i

uifi + u+
i f

+
i , (2.5)

where i ⊂ N is a multi-index and ui, u
+
i ∈ C for each i. Note that |i| denotes the cardinality

of the multi-index.
Note that given an element u ∈ F , the mapping u 
→ ũ defined by∑

i

uifi + u+
i f

+
i 
→

∑
i

(−1)|i|(|i|−1)/2
(
uifi + u+

i f
+
i

)
(2.6)

gives an involution on F . This involution will be referred to as the reversion of u.
Using parentheses to denote ordered subsets, the reversion involution satisfies the

following identities:

f(i1,i2,...,ik) = f̃(ik ,ik−1,...,i1), (2.7)

and

f +
(i1,i2,...,ik)

= f̃ +
(ik,ik−1,...,i1)

. (2.8)

Let u, v ∈ F with canonical expansions of the form in (2.5). An inner product is defined
on F by

(u, v) =
∑

i

uivi + u+
i v

+
i . (2.9)

This inner product on F induces a norm on F by

‖u‖2 = (u, u) =
∑

i

|ui |2 +
∣∣u+

i

∣∣2. (2.10)

Let the collection {xi} denote an orthonormal basis for a separable Hilbert space H. An
inner product on F ⊗ H is then defined by bilinear extension of

(u ⊗ x�, v ⊗ xk) = δ�k(u, v), (2.11)

where δij denotes the Kronecker delta function.

7
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Note that elements of F ⊗ H are of the form
∑

i ui ⊗ xi , where ui ∈ F for each i.
Consequently, this inner product defines a norm on F ⊗ H by⎛⎝∑

i

ui ⊗ xi,
∑

j

uj ⊗ xj

⎞⎠ =
∑

i

‖ui‖2, (2.12)

where ‖ui‖ is the inner product norm on F defined in (2.10).
Given u ∈ F , let u be defined by∑

i

uifi + u+
i f

+
i =
∑

i

uifi + u+
i f

+
i . (2.13)

The F-inner product 〈, 〉 : F ⊗ H → F is defined on F ⊗ H by bilinear extension of

〈u ⊗ x�, v ⊗ xk〉 = δ�kuv. (2.14)

The 1-norm on F is defined by∥∥∥∥∥∥
∑

i

uifi + u+
i f

+
i

∥∥∥∥∥∥
1

=
∑

i

|ui | +
∣∣u+

i

∣∣. (2.15)

Remark 2.1. Throughout the remainder of the paper, the discussion is restricted to the
subalgebra of fermion annihilation operators. The results are equally valid in the subalgebra
of fermion creation operators by replacing each occurrence of fi with f +

i . Note also that the
scalar coefficients are all real valued.

Definition 2.2. Given a graph G = (V ,E) on n vertices labeled by integers 1, . . . , n, let
λ : E → {n + 1, . . . , n + |E|} be a labeling of the graph’s edges. The fermion adjacency
operator � associated with G is a bounded operator on the Hilbert space F ⊗ H defined by

� =
∑
i,j

Aijf{j}f{λ({vi ,vj })}|xi〉〈xj |, (2.16)

where A is the graph adjacency matrix defined in (1.10).

Remark 2.3. Note that vertices are also identified with basis elements xi of H by the definition
of the fermion adjacency operator. Consequently, there should be no confusion when referring
to vertex xi .

Theorem 2.4. Let G be a graph on n vertices. Let � be the fermion adjacency operator
associated with G. Let m � 3 be an integer satisfying m ≡ 1 (mod 2). Then, denoting the
number of distinct m-cycles based at fixed vertex x0 by zm,

‖〈x0,�
mx0〉‖1 = 2zm. (2.17)

Proof. First, it will be shown that for any positive integer m, 〈x0,�
mx0〉 is a sum of terms in

F corresponding to closed m-walks based at x0. It will then be shown that as a consequence
of fi

2 = 0, all terms representing closed m-walks that revisit a vertex at an intermediate step
will be removed.

First it is necessary to prove that 〈xi,�
mxj 〉 is a sum of terms in F corresponding to

m-walks with initial vertex xi and terminal vertex xj . Proof is by induction on m. When
m = 1, 〈xi,�xj 〉 = Aijf{λ(vj )}f{λ({vi ,vj })}, and the claim is true by definition of �.

8
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To simplify notation, denote by wi,j the multi-index associated with the vertex/edge
sequence (vie1, . . . , emvj ) representing an m-walk from vi to vj . Now assuming the
proposition holds for m and considering the case m + 1,

�m+1 = �m

⎛⎝∑
i,j

Aijf{j}f{λ({vi ,vj })}|xi〉〈xj |
⎞⎠

=

⎛⎜⎜⎝∑
i,j

∑
m-walks

wi,j :vi→vj

fwi,j
|xi〉〈xj |

⎞⎟⎟⎠
(∑

k,�

Ak�f{�}f{λ({vk,v�})}|xk〉〈x�|
)

=
∑
i,j

∑
m-walks

wi,j :vi→vj

fwi,j

∑
�

Aj�f{�}f{λ({vj ,v�})}|xi〉〈x�|

=
∑
i,j

∑
(m+1)-walks
wi,j :vi→vj

fwi,j
|xi〉〈xj |. (2.18)

Now 〈xi |�m+1|xj 〉 = ∑ (m+1)-walks
wi,j :vi→vj

fwi,j
is a sum of products of 2(m + 1) fermion

annihilators in F . Terms of the sum are zero in two cases.
In the first case, a vertex (or edge) is repeated at some step in the walk. Then fi

2 = 0
appears in the product. Hence, the only nonzero terms represent (m + 1)-paths from xi to xj ,
with the possible exception that xi is repeated once in an intermediate step. This exception
occurs because the fermion annihilator associated with the initial vertex of the walk is not
included in the product. When i = j , this fermion annihilator is acquired in the last step of
the walk, and the exception is dealt with. Hence, only products associated with cycles are
nonzero.

In the second case, anti-commutativity of the fermion annihilators could cause some
terms to have sum zero. In order for this to happen, two terms must be products of fermions
representing walks of equal length with the same initial vertex and the same terminal vertex.
In addition, they must include the same vertices and the same edges. This is only possible
if the walks either form a cycle or contain a cycle as a sub-walk. Cycles as sub-walks are
eliminated by the null-square property of fermions.

It now follows that terms of 〈x0,�
mx0〉 are nonzero only if they correspond to closed

m-walks x0 → x0 in which no vertex appears more than once (the initial vertex is only
represented in the last step of the walk) and no edge is used more than once. In other words,
the nonzero terms correspond to m-cycles x0 → x0. All that remains to be shown is that all
such m-cycles are recovered.

When m � 3, each m-cycle has two orientations. Because each m-cycle has two
orientations, it appears in the expansion of �m as the sum of two representative basis multi-
vectors. Using parentheses in the multi-index to denote order of multiplication in generating
the multi-vector, one multi-vector is of the form

β = f(v1,λ({v0,v1}),...,v0,λ({vm−1,v0}))

= (−1)
m(m−1)

2 f(v1,...,vm−1,v0)f(λ({v0,v1}),...,λ({vm−1,v0})), (2.19)

and the other is of the form

f(vm−1,λ({v0,vm−1}),...,v0,λ({v1,v0})) = (−1)
m(m+1)

2 f(λ({v0,vm−1}),...,λ({v1,v0}))f(vm−1,...,v1,v0)

= (−1)
m2+3m−2

2 f(λ({v0,vm−1}),...,λ({v1,v0}))f(v0,vm−1,...,v1)

= (−1)2m−1β̃ = −β̃. (2.20)

9
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Here β̃ denotes reversion. If β = −β̃, the cycle appears with multiplicity two as an entry
of �m. If β = β̃, the two representations sum to zero, and the cycle will not appear as an
entry of �m. Since β is a multi-vector indexed by a set of cardinality 2m, β̃ = (−1)

2m(2m−1)

2 β.
Hence, β = −β̃ if and only if m(2m − 1) is odd, i.e., m ≡ 1 (mod 2).

In light of these considerations, the nonzero terms of 〈x0,�
mx0〉 represent all of the

m-cycles in G when m ≡ 1 (mod 2). �

Lemma 2.5. Let � be the fermion adjacency operator associated with a finite graph G on n
vertices. Then, �m = 0 for all m > n. In other words, � is nilpotent.

Proof. By construction, 〈xi,�
mxj 〉 is a sum of terms corresponding to m-walks from vertex

xi to vertex xj in a graph on n vertices. Because fi
2 = 0 for each i, the only nonzero terms

correspond to walks with no repeated edges and no repeated vertices. �

For any fermion adjacency operator � and fixed basis element x0 ∈ H, the projection ρx0

is defined by

ρx0� = 〈x0,�x0〉. (2.21)

For u ∈ �2(F), the scalar sum evaluation of u is the homogeneous linear functional defined
by

ϕ(u) = ϕ

⎛⎝∑
i

uifi

⎞⎠ =
∑

i

ui . (2.22)

For arbitrary fermion adjacency operators �1,�2 and arbitrary α ∈ C, the composition
ϕ ◦ ρx0 satisfies

(ϕ ◦ ρx0)(1) = 1, (2.23)

(ϕ ◦ ρx0)(α�1 + �2) = α(ϕ ◦ ρx0)(�1) + (ϕ ◦ ρx0)(�2). (2.24)

The collection of fermion adjacency operators associated with finite graphs generates a
multiplicative semigroupN . For every � ∈ N , the dual operator �† is defined as the transpose
of �. Then for any � ∈ N ,

(
ϕ ◦ ρx0

)
(�†�) = 0, i.e., the positivity requirement for states in

an algebraic probability space is satisfied by ϕ ◦ ρx0 on the semigroup N .
Hence,

(
N , ϕ ◦ ρx0

)
is considered an algebraic probability space. In this context,(

ϕ ◦ ρx0

)
(�m) is the mth moment of the quantum random variable � in the state ϕ ◦ ρx0 .

When m is odd, the fermion adjacency operator � associated with a finite graph G is a
quantum random variable whose mth moment in the state ϕ ◦ ρx0 corresponds to the number
of m-cycles based at vertex x0 in G.

Each fermion adjacency operator is a bounded linear operator on the Hilbert space F ⊗H.
The trace of a fermion adjacency operator � is defined by

Tr(�) =
∑

i

〈xi,�xi〉. (2.25)

Corollary 2.6. Let G be a graph on n vertices. Let � be the fermion adjacency operator
associated with G. Let m � 3 be an integer satisfying m ≡ 1 (mod 2). Then, denoting the
number of distinct m-cycles contained in G by Zm,

‖Tr(�m)‖1 = 2mZm. (2.26)

10
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Proof. This is an immediate consequence of theorem 2.4, once the possibility of unwanted
cancellation of terms in the trace is ruled out.

Each m-cycle in G has m choices of base point and therefore is represented by m terms
in the expansion of the trace. Given m ≡ 1 (mod 2) so that the representative 2m-vectors
exist in �m, summing the multi-vectors without cancellation requires equality under cyclic
permutation of the vertex-edge pairs in the multi-vector. This is illustrated by

fv2,λ({v1,v2}) · · · fv0,λ({vm−1v0})fv1,λ({v0v1}) = (−1)2(m−1)fv1,λ({v0v1})fv2,λ({v1,v2}) · · · fv0,λ({vm−1v0}).
(2.27)

It is now clear that summing the trace entries results in no undesired cancellation since 2(m−1)

is always even. �

2.2. General nilpotent adjacency operators

The fermion adjacency operator approach can be extended to recover k-cycles for any integer
k by defining a different algebraic probability space.

Let Z be the associative infinite-dimensional algebra generated by the unit scalar
ζ∅ = 1 ∈ R and the commuting nilpotents {ζ{i}}(1 � i) satisfying

ζ{i}ζ{j} = ζ{j}ζ{i} =
{

ζ{i,j} if i �= j,

0 otherwise.
(2.28)

The algebra Z is generated within the fermion field F by ζ∅ = 1 along with the
set {ζ{i}}1�i , where ζ{i} = f2if2i+1. An equivalent construction uses fermion annihilation
operators. Commutativity is ensured by the use of disjoint fermion pairs.

As a vector space, Z is spanned by unit multi-vectors of the form ζi = ∏ι∈i ζ{ι},
where i ⊂ N is a multi-index. An arbitrary element u ∈ Z has the canonical expansion
u =∑i⊂N

uiζi , where ui ∈ R for each multi-index i.
The �2 norm on Z is then defined by

‖u‖2 =
∑

i

ui
2. (2.29)

For any u ∈ �2(Z), the scalar sum evaluation of u is the homogeneous linear functional
defined by

ϕ(u) =
∑

i

ui . (2.30)

Remark 2.7. The algebra Z is referred to as a zeon algebra by Feinsilver [4]. It is the algebra
referred to as C�|V |nil in Staples [17], and it is the algebra referred to as NV in Schott and
Staples [14].

Once again, let {xi}∞i=1 denote an orthonormal basis of a separable Hilbert space H.

Definition 2.8. Let {ζ{i}} denote the nilpotent generators of Z . Associated with any finite
graph G = (V ,E) on n vertices is a nilpotent adjacency operator � defined by

� =
∑
i,j

Aij ζ{j}|xi〉〈xj |, (2.31)

where A is the graph adjacency matrix defined in (1.10).

11
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Figure 3. A graph and its nilpotent adjacency operator in matrix form.

The nilpotent adjacency operator acts on the Hilbert space Z ⊗ H. The dual operator �†

is defined as the transpose of �. Let the space of bounded operators on Z ⊗ H be denoted
by B (Z ⊗ H). The nilpotent adjacency operator � associated with any finite graph is then an
element of B (Z ⊗ H).

Theorem 2.9. Let G = (V ,E) be a finite graph on n vertices with associated nilpotent
adjacency operator �. Let x0 ∈ H represent an arbitrary fixed vertex of G. For integer k � 3,
let Xk denote the number of k-cycles based at x0. Then,

ϕ

(
∂k

∂tk
〈x0, exp(t�)x0〉

∣∣∣∣
t=0

)
= 2Xk. (2.32)

Proof. By definition,

exp(t�) =
∞∑

�=0

t���

�!
. (2.33)

An inductive argument proves that for any positive integer k,

∂k

∂tk
(t���) =

{
(�)kt

�−k��, k � �

0, k > �,
(2.34)

where (�)k := �(� − 1) · · · (� − k + 1) denotes the falling factorial. Hence,

∂k

∂tk
exp(t�) =

∞∑
�=k

(�)kt
�−k��. (2.35)

As in the proof of theorem 2.4, entries of 〈x0, �
�x0〉 correspond to �-cycles based at vertex

x0. Unlike the fermion adjacency operator approach, commutativity ensures that there are no
sign changes and no unwanted cancellation of terms. Hence, letting Xk denote the number of
k-cycles based at an arbitrary vertex x0 in G,

ϕ(〈x0, �
kx0〉) = 2Xk. (2.36)

In light of (2.35), one finds

ϕ

(
∂k

∂tk
〈x0, exp(t�)x0〉

)∣∣∣∣
t=0

= 2Xk. (2.37)
�

12
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Denote by ρx0 the projection ρx0� = 〈x0, �x0〉. Note that for nilpotent adjacency
operators �1, �2 and for arbitrary α ∈ C, the composition ϕ ◦ ρx0 satisfies(

ϕ ◦ ρx0

)
(1) = 1, (2.38)(

ϕ ◦ ρx0

)
(α�1 + �2) = α

(
ϕ ◦ ρx0

)
(�1) +

(
ϕ ◦ ρx0

)
(�2). (2.39)

More generally, the collection of nilpotent adjacency operators associated with finite
graphs generates a multiplicative semigroup, G. By construction of the nilpotent adjacency
operators,

(
ϕ ◦ ρx0

)
(�†�) = 0 for all � ∈ G. Hence, the positivity requirement for states is

satisfied, and
(
G, ϕ ◦ ρx0

)
is an algebraic probability space.

In this context,
(
ϕ ◦ρx0

)
(�m) is the mth moment of the quantum random variable � in the

state ϕ ◦ ρx0 . It is now evident that the nilpotent adjacency operator � associated with a finite
graph G is a quantum random variable whose mth moment in the state ϕ ◦ ρx0 corresponds to
the number of m-cycles based at vertex x0 in G.

Corollary 2.10. Let G = (V ,E) and � be defined as in the statement of theorem 2.9. For
arbitrary integer k � 3, let zk denote the number of k-cycles in G. Then,

ϕ

(
∂k

∂tk
Tr(exp(t�))

∣∣∣∣
t=0

)
= 2kzk. (2.40)

Define a sequence of operators {�n}(n � 1) in B(Z ⊗ H) such that for each n,�n is the
nilpotent adjacency operator associated with a graph on n vertices. The sequence {�n} will be
said to weakly converge to the operator � if for each k � 0 and every coordinate basis vector
x0, the following equation holds:

lim
n→∞ ϕ

(〈
x0, �n

kx0
〉) = ϕ(〈x0, �

kx0〉). (2.41)

Denote this convergence by �n
w→ �.

Definition 2.11. For each n > 0, let Gn = (Vn, En) denote a graph on n vertices such that
Vn ⊂ Vn+1 for each n > 0. The sequence (Gn)n>0 will be referred to as a graph process.

Theorem 2.12 (ascending chains). Let (Gn)n>0 be a graph process, and for each n > 0, let
�n ∈ B(Z ⊗H) be the nilpotent adjacency operator associated with Gn. Fix vertex x0 in Gm

for some m > 0. For fixed integer k � 3, let Xk(n) denote the number of k-cycles based at x0

in Gn for each n � m.
If ∃� ∈ B(C ⊗ H) such that �n

w→ � as n → ∞, then

ϕ

(
∂k

∂tk
〈x0, exp(t�)x0〉

)∣∣∣∣
t=0

= 2 lim
n→∞ Xk(n). (2.42)

Proof. Letting Gn denote the nth graph of the sequence with associated nilpotent adjacency
operator �n, orthonormal basis vectors x1, . . . , xn of H are associated with the vertices of Gn

by construction of �n.
Letting Xk(n) denote the number of k-cycles based at an arbitrary vertex x0 in Gn,

ϕ

(
∂k

∂tk
〈x0, exp(t�n)x0〉

)∣∣∣∣
t=0

= 2Xkn. (2.43)

Note that the convergence �n
w→ � implies

lim
n→∞ ϕ(〈x0, exp(�n)x0〉) = ϕ(〈x0, exp(�)x0〉). (2.44)

13
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Hence,

lim
n→∞ ϕ

(
∂k

∂tk
〈x0, exp(t�n)x0〉

)∣∣∣∣
t=0

= ϕ

(
∂k

∂tk
〈x0, exp(t�)x0〉

)∣∣∣∣
t=0

= 2 lim
n→∞ Xk(n). (2.45)

�

The nilpotent adjacency operator approach can also be applied to Markov chains and
random graphs. The next two theorems illustrate these applications.

Recall that a sequence of random variables (Yk) taking values in S = {1, . . . , n} is a
time-homogeneous Markov chain on n states if it satisfies the Markov property

P(Yk = s|Y0 = y0, . . . , Yk−1 = yk−1) = P(Yk = s|Yk−1 = yk−1) (2.46)

for all s, y0, . . . , yk−1 ∈ S. The transition matrix of a time-homogeneous Markov chain on n
states is the stochastic matrix defined by

Mij = P(Xk = j |Xk−1 = i). (2.47)

Identifying the states S with the vertices of a graph G, a Markov chain is a time-homogeneous
random walk on G.

Theorem 2.13 (time-homogeneous random walks on finite graphs). Let M denote the transition
matrix corresponding to an n-state Markov chain (i.e., time-homogeneous random walks on a
graph G), and let τ denote a nilpotent stochastic operator defined by

τ =
∑
i,j

Mij ζ{j}|xi〉〈xj |, (2.48)

where each ζ{j} is a null-square generator of Z.

Let the state ϕ be defined as in (2.30), and fix a vertex x0 of G. Then the probability that
an m-step random walk on G forms an m-cycle based at x0 is given by

P(m −cycle at x0) = ϕ ◦ ρx0(τ
m). (2.49)

Proof. To simplify notation, let the vertex sequence ω = (ω0, . . . , ωm−1) represent an m-
cycle, i.e., ωi is adjacent to ωi+1 for 0 � i � m − 1 and ωm−1 is adjacent to ω0. In light
of established results and keeping the Markov property in mind, it is evident that terms of
〈x0|τm|x0〉 have the form

ϕ(〈x0|τm|x0〉) =
∑

m-cycles ω:x0→x0

P(ω exists). (2.50)

Note that because the transition matrix M is not necessarily symmetric, the graph G is assumed
to be directed. Hence, no correction needs to be made for orientation. �

Let V = {1, 2, . . . , n} represent a fixed set of vertices for a graph G. A random graph
G = (V ,E) is constructed by defining a collection of pairwise-independent probabilities
0 � pij � 1 (1 � i �= j � n) such that

pij = P((i, j) ∈ E). (2.51)

In other words, pij is the probability that there exists a directed edge from vertex i to vertex j

in the graph G.

14
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Theorem 2.14 (cycles in random graphs). Consider a random directed graph G = (V ,E) on
n vertices, corresponding to pairwise-independent edge-existence probabilities pij (1 � i �=
j � n). Let ξ denote the nilpotent adjacency operator defined by

ξ =
∑
i,j

pij ζ{j}|xi〉〈xj |, (2.52)

where each ζ{j} is a nilpotent generator of Z .
Let the state ϕ be defined as in (2.30), fix a vertex x0, and define the random variable zm

as the number of m-cycles in G based at x0. Then,

ϕ ◦ ρx0(ξ
m) = E(zm). (2.53)

That is, ξ is a quantum random variable whose mth moment in the state ϕ◦ρx0 corresponds
to the expected number of m-cycles occurring in the graph.

Proof. Because the probabilities are pairwise independent,

ϕ(〈x0|τm|x0〉) =
∑

m-cycles ω:x0→x0

m∏
�=1

pw�−1w�
=

∑
m-cycles ω:x0→x0

P(w exists). (2.54)

Because the graph is assumed to be directed, no correction is made for cycle orientation. �

2.3. Decomposition of nilpotent adjacency operators

In the work of Hashimoto, Hora and Obata (cf [5, 12]), fixing a vertex v0 in a finite graph induces
a stratification of all the vertices by associating each vertex with the length of the shortest path
linking it with v0. This stratification is then used to define a quantum decomposition of the
graph’s adjacency matrix.

The nilpotent adjacency operator of a finite graph also admits a quantum decomposition
as the sum of two quantum random variables. The decomposition considered here differs from
that of Hashimoto et al.

Define δij to be the Kronecker delta function. Let θij denote the ordering symbol defined
by

θij =
{

1 if i < j

0 otherwise.
(2.55)

Elements �− and �+, respectively, reside in the semigroups � and ϒ of lower- and
upper-triangular nilpotent adjacency operators, which satisfy 〈xi,�xj 〉 = 0 if i � j and
〈xi,�xj 〉 = 0 if i � j , respectively. These semigroups are non-Abelian; hence, �− and �+

are quantum random variables.
The canonical quantum decomposition of the nilpotent adjacency operator � associated

with an arbitrary finite graph is then defined by

� = �+ + �−, (2.56)

where

〈xi,�
+xj 〉 = θij 〈xi,�xj 〉, (2.57)

〈xi,�
−xj 〉 = 1 − θij 〈xi,�xj 〉. (2.58)

Also associated with a graph G = (V ,E) is a degree operator A◦ defined by

〈xi, A◦xj 〉 = δij deg(xi). (2.59)

Recall that deg(xi) refers to the number of edges incident with vertex xi in G.
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Assuming the graphs being considered are simple, i.e., undirected and contain no loops
and no multiple edges, the degree operator is related to the nilpotent adjacency operator by

ϕ(〈xi,�
2xi〉) = 〈xi, A◦xi〉, ∀ i � 1. (2.60)

Unlike the quantum decomposition of Hashimoto et al [5], this degree operator plays no
role in the canonical decomposition described here.

3. Conclusion

While the interplay between graph theory and quantum probability has been a topic of
investigation in a number of earlier works, this paper is the first to construct families of
quantum random variables whose mth moments reveal information about cycles in arbitrary
graphs and Markov chains. This work illustrates potential benefits of applying the tools of
quantum probability to general problems in combinatorics and theoretical computer science.
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